
0 30 Td
6 sc %color no. 6: '!'=0x21 --> full ink in 2. gs
(loan free of

interest) Tj %second text
ET

endstream
endobj

9 0 obj %This is the first graphic state.
<< /Type /ExtGState

/TR 10 0 R %Ref. to the used transfer function
>>

endobj

10 0 obj %This transfer function is used in the
<< /FunctionType 4 %first graphic state

/Domain [0.0 1.0] %The function is designed to output 1
/Range [0.0 1.0] %for input 0x21 (zero ink) and output 0
/Length 40 %for input 0x20 (full ink)

>>
stream
{0.126 sub 500 mul}
endstream
endobj

11 0 obj %This is the second graphic state.
<< /Type /ExtGState

/TR 12 0 R %Ref. to the used transfer function
>>

endobj

12 0 obj %This transfer function is used in the
<< /FunctionType 4 %second graphic state

/Domain [0.0 1.0] %The function is designed to output 0
/Range [0.0 1.0] %for input 0x21 (full ink) and output 1
/Length 40 %for input 0x20 (zero ink)

>>
stream
{0.126 sub 500 mul 1 exch sub}
endstream
endobj

.

.

.

The displayed text for the above �le is 'loan free of interest'. If the character
' !'= 0 x21 at position 6 in the color string (in object 5 0) is changed to ' '= 0x20
the displayed text is 'the interest rate is 16.00%'. The characters in the color

string may have any of the 256 byte values except for '(' =0x28 and ')'=0x29
the delimiters of strings in PDF.

To perform the general strategy of Section 2 one would use the color string forb
and b′. Once these two di�erent strings have been found (and hopefully do not
contain '(',')') one chooses a color number (character position) with di�erent
characters in b and b′ (6 in the above example). The rest of the �le has to be
modi�ed accordingly: The chosen color number has to be employed in object
8 0 and the transfer functions in objects 10 0 and 12 0 respectively have to be
modi�ed (in the above example they are speci�c to 0x20 and 0x21).

Remark: In the above example we have printed the two texts at di�erent posi-
tions. 'White on Black' is 'White' in PDF unless the 'overprint mode' is active.
With a correctly working overprint mode the above reusable collisions would be
nearly universal. But we were not able to activate this feature and it is said in
[PDF] that it is device dependent. So we only claim here that basically it should
be possible to construct nearly universal collisions for black/white texts if all
the viewers and printers strictly obey the speci�cation. (A possible solution to
overcome the overprint problem is to print the overlap of the two texts in black
at the end. This basically works but the results we obtained were not perfect,
the shape of the resulting characters was not really smooth, some information
about the hidden text leaked out.)

3.3 TIFF

TIFF (Tagged Image File Format) is a standard image �le format described in
[TIFF] in particular used for scanning paper documents:

A TIFF �le has a maximal length of 2 32 bytes. The pages of a TIFF document
are described by IFDs (image �le directories). At the beginning of the TIFF
�le there is a header which at its end contains a 4-byte o�set (o�sets in TIFF
always give the position relative to the 1. byte of the �le) that speci�es the start
address of the �rst IFD. Every IFD contains several 12-byte directory entries
and a 4-byte value at the end, the latter being either the o�set to specify the
start of the next IFD if there is any or the value 0x00000000 if there is no further
IFD.

Obviously the o�sets to the next IFD could be used to construct poisoned mes-
sages: Two documents only di�ering in one of these o�sets could be very di�erent.
But this does not work for example for the collision attack on MD5 described
in [WY] as the hash input strings do not di�er at the �rst 32 bytes for their
collisions. One would have to �nd an attack with di�erences also for the �rst 4
bytes. Even then as the o�set to the �rst IFD is located quite at the beginning
of the �le this �rst IFD probably cannot be used for the attack and only the
second and the following IFDs could be di�erent.

A closer look at the directory entries in an IFD delivers a method that leads to
a more practical 'poisoned message' attack. One of the 12-byte directory entries

could look as follows:

tag type count value
0x01110x00030x000000030x000014e0

The 2-byte tag 0x0111 indicates that the entry describes the o�sets of the strips
of the IFD: Every page can be split up in strips which can be located at di�erent
positions in the �le. The 2-byte type 0x0003 indicates that the o�sets will be
given as 'shorts' i.e. 2-byte values. The 4-byte count 0x00000003 indicates that
there are 3 strips. The 4-byte value gives the o�set of the location in the TIFF �le
where three 2-byte o�sets for the three strips can be found stored consecutively
namely at 0x000014e0. (If the count was 0x00000001 or 0x00000002 then 'value'
would contain the 1 or 2 short o�sets themselves but not their address.)

To perform the general procedure described in Section 2 one would let the 6
bytes at o�set 0x000014e0 be part of the stringsb, b′. And if one of the three
2-byte o�sets for the strips di�ers for b and b′ to display the corresponding strip
the viewer will look at di�erent locations in the TIFF �le.

Of course there must not be overlaps between the resulting storage area of the
strip data and other data in the TIFF �le which leads to additional constraints
on b and b′ which will be satis�ed with good probability if b is random and the
TIFF pages contain signi�cantly less than 215 byte information (for example fax
quality text pages). Thus one can get very well reusable collisions2 for TIFF
�les.

If one tries to produce MD5 collisions for TIFF using the abstract collision attack
described in [WY] one is restricted by the actual di�erences betweenb and b′

that can occur. As can be seen from the TIFF reference the strips of the page
must have the same length except for the last which can be signi�cantly smaller.
So the best that can be expected is a reusable collision that allows to produce
colliding TIFF pages with basically arbitrary given contents but such that the
�rst halfs (or the second halfs) of the pages are equal.

3.4 Word 97

In this subsection we treat meaningful MD5 �le format Word 97 collisions.
Roughly speaking, we give a Word macro that performs a speci�c action de-
pending on the status of a particular if-condition. In our concrete example the
last decimal digit of a purchase price, a fee or something like that should be dis-
played, resp. printed, in white instead of in black. In other words, the �nal digit
should be invisible for the potential victim on the screen, resp. on the printout.

2 There is also an index entry for the lengths of the strips which is a further constraint:
The exchanged graphical data basically should have the same lengths. But practical
experiments show that viewers are quite tolerant with respect to that, we didn't
need to care about this.

We point out that we did not study the Word format in detail. Instead, we
followed a purely empirical approach where our only tool was an ordinary hex
editor. The key observation was the following: After some meaningful bytes the
�rst sector of a Word 97 �le (512 Bytes) merely contains �llers ('FF'). Practical
experiments underline that Word 97 neglects the values of these �llers.

Hence an adversary may overwrite a subsequence of �llers (e.g. Bytes 0x80 to
0xFF in our example; the numbering starts with 0x00) with a hex editor by
strings that lead to abstract collisions. These strings are used asb and b′ and
result in two di�erent Word �les having the same hash value.

The macro scans this area and evaluates a simple arithmetic expression that
is di�erent for both collisions. In case of MD5, for instance, the msb of byte
0x80 + 0x13 = 0x93 equals 0 for one �le and 1 for the other if we use the
construction from [WY] (keep in mind the 'little endian' convention for MD5).
Or equivalently, interpreted as a character byte 0x93 is< 128 in the �rst case
but ≥ 128 in the second. Depending on the value of this character the macro
either has no e�ect or it searches the $-sign in the displayed text and changes
the color of the last digit of the corresponding price from black to white.

The following list collects the particular steps. The example macro is included
in the annex. we point out that the general procedure is the same for any hash
function provided that an adversary is able to generate abstract collisions to
given IVs.

1. The adversary opens a Word �le 'contract0.doc' and writes the text.
2. The adversary writes a macro with the following property: If the ASCII value

of byte 0x93 is< 127 the macro has no e�ect. Otherwise it selects the $-sign
within the (visible) text and changes the preceding digit of the price from
black to white.

3. The adversary connects the macro with contract0.doc and saves contract0.doc.
4. The adversary generates a collision of two 256-byte strings for which the

�rst 128 bytes equal the �rst 128 bytes of contract0.doc. Then he uses a hex
editor to replace bytes 0x80 to 0xFF of contract0.doc by the respective sub-
strings, obtaining two di�erent �les contract.doc and cheatingcontract.doc.
Byte 0x93 of contract.doc is< 127 whereas byte 0x93 of cheatingcontract.doc
is ≥ 128.

5. The adversary sends cheatingcontract.doc to his victim.
6. The victim opens cheatingcontract.doc. If he rejects the use of macros (Case

A) nothing happens, i.e. he will see the correct text. That is, the attack has
been unsuccessful. Otherwise (Case B) the displayed or printed price appears
to be lower by factor 10.

7. If the victim agrees with the contract (which may depend on the displayed
text) he signs cheatingcontract.doc and sends it back to the adversary.

8. In Case B the adversary might replace the document cheatingcontract.doc
by contract.doc later.

Remark 1. a) This method seems to deliver a collision which is reusable to a cer-
tain extent: Experiments indicate that exchanging characters of the text (keeping

the length constant) does not change the bytes in the �le located prior to the
b, b′ positions.
b) We already have pointed out that we followed an empirical approach. The
Word format is yet very complicated and contains hundreds of parameters like
o�sets and modi�ers. So it might not be too surprising if someone was able
to evaluate more sophisticated methods to produce poisoned messages without
using macros, similarly to the constructions for PostScript, PDF and TIFF.
However, the straight-forward idea to use the o�set contained in the FIB (File
Information Block) of a Word 97 document, which determines the beginning of
the proper text does not seem to work. As the Word format does not seem to be
interesting enough with respect to digital signatures we did not go into details.

3.5 Concrete examples for MD5

We constructed MD5 format �le collisions for PDF, TIFF and Word 97 where we
used [WY]. The concrete MD5-PDF-collision seems to work for Acrobat Readers
from version 4 to 8. The concrete MD5-TIFF-collision consists of two pages that
di�er at 25 % (instead of 50 %). This is due to the shape of the �les produced
by our scanning software: The �les contained four strips of almost equal size,
and for convenience we did not change this structure.

4 Executables and packages

In this section we observe that universal collisions can be constructed for binary
executables and reusable collisions for RPM. These are probably less interesting
in practice than the results for document �le formats: The signing party should
really understand and accept the code it signs otherwise there will arise problems
also without hash collisions.

4.1 Plain binaries

Obviously assembler languages for common processors allow if-then-else con-
structions and o�set constructions of poisoned programs. Also reusable and even
universal collisions are possible. [Mi] describes a way to obtain such executables
by writing suitable C-code instead of assembler3: After compilation one inspects
the resulting executable to �nd out where the strings b, b′ are located. This
method could also be suitable to construct universal collisions - of course this
depends on the assumption that the compiler keeps some 'natural' order of the
relevant data and commands of the C-program in the executable �le.

3 Actually [Mi] describes how to produce colliding selfextracting executables common
to MS Windows users.

4.2 RPM

In the Linux world executables normally are distributed as packages. One of the
most popular package formats is RPM (Red Hat Package Management) which
is used by many Linux distributions and described for example in [Ba].

An RPM package consists of four successive parts: The lead, the signature, the
header and the archive. The lead is some sort of exterior badge whose integrity is
not secured, the signature contains the size, the MD5 hash value and optionally
a PGP-signature of the rest of the �le (header+archive). We assume now that
the PGP-signature employs MD5 as hash function and ask for some reusable
collisions for (header+archive) to forge the RPM-signature.

The header itself contains another header and after that several 16-bytes index
entries and a store at the end. The index entries look as follows:

tag type o�set count
4 bytes 4bytes 4 bytes 4bytes

A useful index entry for constructing reusable hash collisions has tag 0x000003�
which corresponds to RPMTAG PREIN specifying the pre-installation script.
Let the type for that entry be 0x0000006 corresponding to STRING type and
the count be 0x00000001 then o�set would give the location of a string inside
the store: This is a shell script to be executed before installation. But Linux
shells allow if-then-else constructions and allow to compare strings. So 'poisoned
packages' should be possible:b and b′ are strings contained in the pre-installation
script. As the archive which contains the binaries is located behind the header
and thus much of the pre-installation script and at least the binaries and also
some information contained in the store (for example the post-installation script
which on the other side could probably as well be used for the 'poisoning') do
not need to be known when the collision is constructed.

Remark: The other index entries in the header restrict the reusableness of the
collision to a certain extent.

5 Certi�cates

In [KL] and [LW] the possibility of constructing X.509 certi�cates for DSA with
di�erent primes p (one of them for example weak against DL algorithms!) but
the same MD5 hash value was observed. [LW] also explicitely deliver two ASN.1
DER encoded X.509 certi�cates for RSA with two di�erent RSA-moduli but the
same MD5 hash value.

These examples show that collisions of X.509 certi�cates can be constructed.
The question we are dealing with here is whether reusable collisions can be
constructed. This should also be the case | in the trivial sense of extending col-
lisions in di�erent ways | as there are �elds in X.509 certi�cates which contain

strings of di�erent lengths for example the 'subject organization' �eld located
ahead of the public key. But this possibility does not seem to have much value
in practice as the �eld 'serial number' is determined by the CA and is located
quite at the beginning of the ASN.1 DER encoded X.509 �le. So if the CA works
correctly and gives di�erent serial numbers to di�erent certi�cates such a hash
collision will only be usable for one pair of X.509 certi�cates.

6 Discussion

We picked out several �le formats and searched for ways to construct reusable or
universal collisions similar to that in [DL1] for PostScript. It turned out that this
was in fact possible for all examined document �le formats although to a di�erent
extent. If there were no explicit program language control constructions (e.g. for
PDF and TIFF) these could be faked by some tricks. Maybe this is typical for
many common �le formats except for primitive ones like ASCII text �les.

We believe that these observations are relevant with respect to digital signatures
and at least serve as good examples to contradict the wide-spread opinion that
abstract collisions of the compression function do not cause any threat in real
life.

Two arguments could naturally arise:

1. The phenomenon is not new: If �le formats allow program structures (macros,
scripting) in documents it is possible to fool people even without hash colli-
sions. The displayed content just has to di�er in di�erent environments (time,
hardware).

This is not really true. The unambiguity of the 'human message' (cf. the in-
troduction) is a solvable problem for digital signatures. However, some of the
examples mentioned in this paper show that also �le formats suitable with re-
spect to that and excluding such kind of tricks, e.g. TIFF, are vulnerable against
'poisoned message' collisions, and this makes a di�erence.

2. A quick look at the document with a hex editor reveals the 'trick' of the
forger even if only one message still exists since the victim has not stored his
version. (This is an important di�erence to meaningful collisions of ASCII �les,
for instance.)

This argument is basically true except for the adjective 'quick'. Examining a �le
in a certain format that uses all kinds of di�erent compressions and encodings
can be quite complicated. However, although an expert should be able to �gure
out what has been done (provided that he knows such constructions) even if all
sort of obfuscating was applied the following’signature phishing' scenario seems
to be possible: From a reusable abstract collision an attacker generates 1000
meaningful collisions in a speci�c �le format. He sends one meassage of each
pair to potential victims, hoping to get at least some valid signatures. He uses
these signatures for fraud and disappears before his attack will be recognized. In

this speci�c scenario reusable hash collisions may turn out to be quite valuable
for the crook.

Once a concrete format �le collision (a||b||c) and (a||b′||c) is known the string c
might be replaced byc′ keeping the collision property but changing the meaning
of the encoded human message. Hence we do not publish concrete examples to
avoid misuse by free-riders. Instead, we described the central aspects to sensitize
the community and to put experts into the position to detect such constructions.

The examples given in this paper seem to indicate a practical basic weakness
of the Merkle-Damgard construction in addition to those mentioned in [MOV]
Section 9.7, [J1] and [KS].

References

[Ba] E.C. Bailey, Maximum RPM, Red Hat, 2000, online at:
http://www.rpm.org/max-rpm/

[DL1] M. Daum, S. Lucks, The Story of Alice and Bob, Presented
at the rump session of Eurocrypt '05, May 2005. Online
http://www.cits.rub.de/imperia/md/content/magnus/rump −ec05.pdf

[DL2] M. Daum, S. Lucks, concrete postscript collisions online at
http://www.cits.rub.de/MD5Collisions/

[J1] A. Joux, Multicollisions in Iterated Hash Functions, Crypto 2004, LNCS 3152
(2004), 306-316.

[J2] A. Joux, Collisions for SHA-0, Presented at the rump seesion of Crypto '04,
August 2004.

[Ka] D. Kaminsky, MD5 to be considered harmful someday, preprint, December
2004, http://www.doxpara.com/md5 someday.pdf.

[KL] J. Kelsey, B. Laurie, Contributions to the mailing list cryp-
tography@metzdowd.com, December 22, 2004, online at
http://diswww.mit.edu/bloom-picayune/crypto/16587.

[KS] J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for
much less than 2n work, Cryptology ePrint Archive, Report 2004/304,
http://eprint.iacr.org/2004/304.

[LW] A. Lenstra, B. de Weger, On the possibility of constructing meaningful hash
collisions for public keys, In ACISP 2005, Springer LNCS 3574 (2005), 267-279.
Full version at http://www.win.tue.nl/ bdeweger/CollidingCerti�cates/ddl-
full.pdf.

[Mi] O. Mikle, Practical Attacks on Digital Signatures Using MD5 Message Digest,
Cryptology ePrint Archive, Report 2004/356, http://eprint.iacr.org/2004/356.

[MOV] A. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, 1997.

[PDF] Adobe Systems Incorporated, PDF Reference, 2nd edition, Addison Wesley,
online at:
http://partners.adobe.com/public/developer/pdf/index reference.html

[TIFF] TIFF Revision 6.0, Adobe Developers Association, online at:
http://partners.adobe.com/public/developer/en/ti�/TIFF6.pdf

[WLFCY] X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, Cryptanalysis of the Hash
Functions MD4 and RIPEMD, EuroCrypt 2005, Springer LNCS 3494 (2005),
118.

[WY] X. Wang and H. Yu , How to Break MD5 and Other Hash Functions, Euro-
Crypt 2005, Springer LNCS 3494 (2005), 1935.

[WYiY] X. Wang, Y. L. Yin, H. Yu, Collision Search Attacks on SHA-1, Crypto 2005,
Springer LNCS 3621 (2005), 17-36.

[WYuY] X. Wang, H. Yu, Y. L. Yin Efficient Collision Search Attacks on SHA-0,
Crypto 2005, Springer LNCS 3621 (2005), 1-16.

A The Word 97 macro

Sub collision()

Dim b(512) As Byte
FName$ = ActiveDocument.Name

Open FName$ For Binary Access Read As #1 Len = 512
Get #1, , b 'the price 1000$ is contained in 2nd line of
Close #1 'the .doc file; that line is selected by

'the Selection .. Count:=2 command

If b(147) >= 128 Then
Selection.Collapse Direction:=wdCollapseStart
Selection.GoTo What:=wdGoToLine, Which:=wdGoToAbsolute, Count:=2
Selection.MoveRight Unit:=wdCharacter, Count:=1
Selection.Find.ClearFormatting
With Selection.Find

.Text = '$'

.Forward = True

.Wrap = wdFindContinue

.Format = False

.MatchWholeWord = False

.MatchWildcards = False

.MatchSoundsLike = False

.MatchAllWordForms = False
End With
Selection.Find.Execute
Selection.MoveLeft Unit:=wdCharacter, Count:=3
Selection.MoveRight Unit:=wdCharacter, Extend:=wdCharacter
Selection.Font.ColorIndex = wdWhite
Selection.GoTo What:=wdGoToLine, Which:=wdGoToAbsolute, Count:=1
Selection.Collapse Direction:=wdCollapseEnd

End If 'by the Selection .. Count:=1 command
'the cursor returns to the first character
'in the text (disguise of attack)

End Sub

